
Bundle functors and fibrations

Anders Kock

Institut for Matematik, Aarhus Universitet, 8000 Aarhus C, Denmark

E-mail: kock@math.au.dk

Abstract

We give an account of bundle-functors and star-bundle-functors (known from differential geo-
metry) in terms of fibered categories.
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Introduction

The notions of bundle, and bundle functor, are useful and well exploited notions in topology and
differential geometry, cf. e.g. [12], as well as in other branches of mathematics. The category
theoretic set up relevant for these notions is that of fibred category, likewise a well exploited notion,
but for certain considerations in the context of bundle functors, it can be carried further. In
particular, we formalize and develop, in terms of fibred categories, some of the differential geometric
constructions: tangent- and cotangent bundles, (being examples of bundle functors, respectively
star-bundle functors, as in [12]), as well as jet bundles (where the formulation of the functorality
properties, in terms of fibered categories, is possibly new).

Part of the development in the present note was expounded in [11], and is repeated almost
verbatim in the Sections 2 and 4 below. These sections may have interest as a piece of pure
category theory, not referring to differential geometry.

1 Basics on Cartesian arrows

We recall here some classical notions, cf. e.g. [2] or [17].
Let π : X → B be any functor. For α : A→ B in B, and for objects X,Y ∈ X with π(X) = A

and π(Y ) = B, let homα(X,Y ) be the set of arrows h : X → Y in X with π(h) = α.
The fibre over A ∈ B is the category, denoted XA, whose objects are the X ∈ X with π(X) = A,

and whose arrows are arrows in X which by π map to 1A; such arrows are called vertical (over A).
The hom functor of XA is denoted homA.

Let h be an arrow X → Y , and denote π(h) by α : A → B, where A = π(X) and B = π(Y ).
For any arrow ξ : C → A, and any object Z ∈ XC , post-composition with h : X → Y defines a map

h∗ : homξ(Z,X)→ homξ.α(Z, Y ).

(we compose from left to right). Recall that h is called Cartesian (with respect to π) if this map
is a bijection, for all such ξ and Z. It is easy to see that Cartesian arrows compose, and that
isomorphisms are Cartesian. In particular, the Cartesian arrows form a subcategory of X . Also, a
vertical Cartesian arrow is an isomorphism.

Example. The following is a fundamental example, which will also be the origin for some of the
applications that we present. Let B be any category, and let B2 be the category of arrows in B,
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66 A. Kock

so the arrows in B2 are the commutative squares in B. Let ∂1 : B2 → B be the functor which to
an arrow assigns its codomain. Then a commutative square in B is a Cartesian arrow in B2 (with
respect to ∂1 : B2 → B) precisely when the square is a pull-back.

The property of being a Cartesian arrow is clearly a kind of universal property. There is a
weaker notion of when an arrow h as above is pre-Cartesian1, namely that, for any Z ∈ XA,
post-composition with h defines a bijection

h∗ : homA(Z,X)→ homα(Z, Y ).

The property of being a pre-Cartesian arrow is clearly a universal property. In fact, to say that
h : X → Y is preCartesian over α can be expressed by saying that h is terminal in a certain
“relative comma-category” XA ↓α Y whose objects are arrows in X over α with codomain Y , and
whose arrows are arrows in XA making an obvious triangle commute.

Remark. There are dual notions of coCartesian and pre-coCartesian arrows; they will not play
much role in the following, except that we at one point shall consider the latter notion; thus, if
α : A→ B in X , and X ∈ XA, we have another “relative comma-category” X ↓α XB whose objects
are arrows in X over α with domain X, and whose arrows are arrows in XB making an obvious
triangle commute. Then a pre-coCartesian arrow over α with domain X is by definition an initial
object in this category.

Clearly, if h is Cartesian, then it is also pre-Cartesian. Also Cartesian arrows over α, with given
codomain Y , are unique up to unique vertical map (necessarily invertible) in XA; the same applies
to pre-Cartesian arrows.

If h is Cartesian, the injectivity of h∗ implies the cancellation property that h is “monic w.r. to
π”, meaning that for parallel arrows k, k′ in X with codomain X, and with π(k) = π(k′), we have
that k.h = k′.h implies k = k′.

For later use, we recall a basic fact:

Lemma 1.1. If k = k′.h is Cartesian and h is Cartesian, then k′ is Cartesian.

For pull-back squares, this is a well known property for the functor ∂1 : B2 → B, cf. the Example
above. The proof of the general case is similar.

The functor π : X → B is called a fibration if there are enough Cartesian arrows, in the following
sense: for every α : A → B in B and every Y ∈ XB , there exists a Cartesian arrow over α with
codomain Y . Such arrow is called a Cartesian lift of α with codomain Y . A choice, for each arrow
α : A→ B in B and for each Y ∈ XB , of a Cartesian lift of α with codomain Y , is called a cleavage
of the fibration π. The domain of the chosen Cartesian arrow over α with codomain Y is sometimes
denoted α∗(Y ). We use cleavages mainly as a notational tool, to facilitate reading, but generally,
we avoid cleavages.

The functor ∂1 : B2 → B (cf. the Example above) is a fibration precisely when B is a category
with pull-backs; then ∂1 is called “the codomain fibration”. A cleavage for it amounts to a choice
of pull-back diagrams in B.

1called Cartesian in the earlier literature (Grothendieck et.al); we follow the terminology mostly in use now, see
e.g. [2] or [17].
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Bundle functors and fibrations 67

2 The “factorization system” for a fibration

Let π : X → B be a fibration, and let z : Z → Y be an arrow in X . Let h : X → Y be a Cartesian
arrow over α := π(z). By the universal property of the Cartesian arrow h, there is a unique vertical
v : Z → X with z = v.h.

Thus, every arrow z in X may be written as a composite of a vertical arrow followed by a
Cartesian arrow (Cartesian arrows, we like to think of as being “horizontal”). And, crucially, this
decomposition of z is unique modulo a unique vertical isomorphism. Or, equivalently, modulo a
unique arrow which is at the same time vertical and cartesian. (Recall that for vertical arrows,
being Cartesian is equivalent to being an isomorphism (= invertible).) This means that every arrow
z in X may be represented by a pair (v, h) of arrows with v vertical and h cartesian, with z = v.h.
We call such a pair a “vh composition pair”, to make the analogy with vh spans, to be considered
below, more explicit. Two such pairs (v, h) and (v′, h′) represent the same arrow in X iff there
exists a vertical cartesian (necessarily unique, and necessarily invertible) s such that

v.s = v′ and s.h′ = h. (1.1)

We say that (v, h) and (v′, h′) are equivalent if this holds. The composition of arrows in X can
be described in terms of representative vh composition pairs, as follows. If zj is represented by
(vj , hj) for j = 1, 2, then z1.z2 is represented by (v1.w, k.h2), where k is cartesian over π(h1) and
w is vertical, and the square displayed commutes:

·

·

v1

? h1 - ·

·

w

?

k
- ·

v2

?

h2
- ·

(1.2)

Such k and w exists (uniquely, up to unique vertical cartesian arrows): construct first k as a
Cartesian lift of π(h1) with same codomain as v2, then use the universal property of Cartesian
arrows to construct w.

The arrows z1 and z2 may be inserted, completing the diagram with two commutative triangles,
since zj = vj .hj . But if we refrain from doing so, we have a blueprint for a succinct and choice-free
description of the fibrewise dual X ∗ of the fibration X → B, to be described in Section 4.

Note that a vh factorization of an arrow in X is much reminiscent of the factorization for an
E-M factorization system, as in [2] I.5.5, say, with the class of vertical arrows playing the role of E,
and the class of Cartesian arrows playing the role of M ; however, note that not every isomorphism
in X is vertical.

3 Construction of functors out of a fibered category

Let π : X → B be a fibration, and consider a functor F : X → Y. Let X denote the category of
vertical arrows in X . Then by restriction, F gives a functor F : X → Y. The restriction of F (or
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68 A. Kock

of F ) to the fibre XA is denoted FA. Similarly, let X denote the category over B consisting of the
Cartesian arrows of X only, and let F denote the restriction of F to X . Then F gives rise to the
following data:

1) for each A ∈ B, a functor FA : XA → Y
2 a functor F : X → Y.

Since the FAs and F are restrictions of the same functor F , it is clear that we have the properties
3) if s is vertical over A, and Cartesian, FA(s) = F (s)
4) Given a commutative square in X , with v and w vertical and with h and k Cartesian (over

α : A→ B, say)

·
k - ·

·

v

?

h
- ·

w

?

Then FA(v).F (h) = F (k).FB(w).

Theorem 3.1. Given functors FA : XA → Y (for all A ∈ B), and given a functor F : X → Y as
in 1) and 2), and assume that the conditions 3) and 4) hold. Then there exists a unique functor
F : X → Y with restrictions FA to the fibres XA and with restriction F to the Cartesian arrows.

If Y comes with a functor to B, and if for all A ∈ B, FA factors through YA ⊆ Y, then the
constructed F is a functor over B.

Proof. Given an arrow x over α : A → B, say. Since X → B is a fibration, x admits a vh
factorization x = v.h with v vertical over A and h Cartesian over α, so we are forced to define
F (x) := FA(v).F (h). To see that this F is well defined, we consider another possible vh factorization
x = v′.h′. It compares with the given v.h by a vertical Cartesian s with v′ = v.s and h = s.h′. We
have

FA(v).F (h) = FA(v).F (s.h′) = FA(v).F (s).F (h′),

FA(v′).F (h′) = FA(v.s).F (h′) = FA(v).FA(s).F (h′),

using that F and FA are functors. By condition 3), F (s) = FA(s), so the two expressions agree.
Let us next prove that the F constructed preserves composition of arrows, say f1.f2. Pick a vh
factorization of f1, say f1 = v1.h1, and similarly for f2. Interpolate a w and k as in (1.2); then use
condition 4) for the interpolated square. –The last assertion is obvious. q.e.d.

Even when, as in the last statement of the Proposition, the category Y is given as a category
over B, it is not assumed to be fibered over B. But if Y → B happens to be a fibration, then
given the family of functors FA : XA → YA, the data of the functor F may be formulated in an
alternative way, provided we assume given cleavages of both X → B and Y → B. For then, to give
the value of F on a Cartesian arrow X ′ → X over α, it suffices to give the value of F on the chosen
Cartesian arrow h : α∗(X)→ X over α and with codomain X. This value is an arrow in Y over α
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Bundle functors and fibrations 69

and with codomain FB(X), and as such factors uniquely by a vertical arrow vα,X followed by the
chosen Cartesian arrow over α with that codomain, thus

FA(α∗(X))

α∗(FB(X))

vα,X

?
- FB(X)

F (h)

-

with the bottom arrow the chosen Cartesian. (Note that F (h) need not be Cartesian; we did not
assume that F preserves the property of being Cartesian.) So the data of F resides in the FAs,
together with the vertical maps

vα,X : FA(α∗(X))→ α∗(FB(X)). (1.3)

(The vα,X thus derived satisfy certain equations, in particular, for fixed α, vα,X is natural in
X ∈ XB ; there are also equational conditions involving the comparison isomorphisms between
α∗ ◦ β∗ and (β ◦ α)∗. In terms of pseudofunctors sometimes used to present fibrations, v is a lax
(or colax?) transformation between the pseudofunctors representing X and Y, respectively. - We
shall not enter into these conditions, since the conditions in the Theorem are clear enough.)

4 The dual fibration X ∗; comorphisms

The construction2 presented in this Section is elementary. (In fact it is clear that it makes sense for
categories and fibrations internal to an exact category.) It is is a direct generalization of the “star
bundle” construction of [12] 41.1, where it is presented to account for the functorial properties of,
say, the formation of cotangent bundles in differential geometry.

Given a fibration π : X → B. We describe another category X ∗ over B, the “fibrewise dual
of X → B”, as follows: The objects of X ∗ are the same as those of X ; the arrows X → Y are
represented by vh spans, in the following sense:

Definition 4.1. A vh span in X from X to Y is a diagram in X of the form

·
h - Y

X

v

?

(1.4)

with v vertical and h cartesian.

2The construction, in elementary terms, of the dual fibration can be distilled out of a more general construction
[1] by Barwick et al. in the context of quasi-categories. I was unaware of their construction when I put a preliminary
version [11] of the present paper on arXiv. I want to thank them for calling my attention to their work. The
construction (for categories, not for quasi-categories) was apparently also known by Borceux, cf. Exercise 8.8.2 in [2]
II.
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70 A. Kock

The set of arrows in X ∗ from X to Y are equivalence classes of vh spans from X to Y , for the
equivalence relation ≡ given by (v, h) ≡ (v′, h′) if there exists a vertical isomorphism s (necessarily
unique) in X so that

s.v. = v′ and s.h = h′. (1.5)

We denote the equivalence class of the vh span (v, h) by {(v, h)}. They are the arrows of X ∗; the
direction of the arrow {(v, h)} is determined by its Cartesian part h.

Composition has to be described in terms of representative pairs; it is in fact the standard
composite of spans, but let us be explicit: If zj is represented by (vj , hj) for j = 1, 2, then z1.z2
is represented by (w.v1, k.h2), where k is Cartesian over π(h1) and w is vertical, and the square
displayed commutes:

·
k - ·

h2 - ·

·

w

?

h1
- ·

v2

?

·

v1

?

(1.6)

Such k and w exists (uniquely, up to unique vertical cartesian arrows): construct first k as a
cartesian lift of π(h1), then use the universal property of cartesian arrows to construct w. (The
square displayed will then actually be a pull-back diagram, thus the composition described will be
the standard composition of spans.)

Composition of vh spans does not give a definite vh span, but rather an equivalence class of vh
spans. So referring to (1.6), the composite of {(v1, h1)} with {(v2, h2)} is defined by

{(v1, h1)}.{(v2, h2)} := {(w.v1, k.h2)}.

There is a functor π∗ from X ∗ to B; on objects, it agrees with π : X → B; and π∗({(v, h)}) =
π(h). Note that if v : X ′ → X is vertical, the vh span (v, 1) represents a morphism X → X ′ in X ∗.

Clearly, a vertical arrow in X ∗ has a unique representative span of the form (v, 1). So the
fibres of π∗ : X ∗ → B are canonically isomorphic to the duals of the fibres of π : X → B, i.e.
(X ∗)A ∼= (XA)op; so X ∗ is “fibrewise dual” to X (but is not in general dual to X , since the functor
π∗ : X ∗ → B is still a covariant functor). The arrows in X ∗, we call comorphisms in X ; it is ususally
harmless to use the name “comorphism” also for a representing vh span (v, h).

There are two special classes of comorphisms: the first class consists of those comorphisms
that can be represented by a pair (v, 1) where 1 is the relevant identity arrow. They are precisely
the vertical arrows for X ∗ → B. – The second class consists of those comorphisms that can be
represented by a pair (1, h) where 1 is the relevant identity arrow. We shall see that these are
precisely the cartesian morphisms in X ∗.

We first note that if (v, h) represents an arbitrary arrow in X ∗, then

(v, h) ∈ {(v, 1)}.{(1, h)}; (1.7)
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Bundle functors and fibrations 71

this is witnessed by the diagram

·
1 - ·

h - ·

·

1

?

1
- ·

1

?

·

v

?

since the upper left square is of the form considered in (1.6).

Proposition 4.2. An arrow in X ∗ is Cartesian iff it admits a vh representative of the form (1, h).
Any vh representative of such arrow is of the form (w, k) with w (vertical and) invertible.

Proof. In one direction, let (1, h) represent a comorphism Y → Z over the arrow β in B, and let
(v, k) represent a comorphism X → Z over α.β. We display these data as the full arrows in the
following display (in X and B):

·

X

v

?
Y

h
-

k′

................................-

Z

k

-

: : :

·
α

- ·
β

- ·

;

The dotted arrow k′, with k′.h = k, comes about by using the universal property of the Cartesian
arrow h in X . Since k and h are Cartesian, then so is k′, by Lemma 1.1. So (v, k′) is a comorphism
over α, and (v, k′).(1.h) ≡ (v, k), and using the cancellation property of Cartesian arrows, (v, k′) is
easily seen to represent the unique comorphism over α.β composing with (1, h) to give (v, k). So
(1, h) is Cartesian in X ∗

In the other direction, let g be a cartesian arrow in X ∗. Let (w, k) be an arbitrary representative
of g. Then by (1.7), g = {(w, 1)}.{(1, k)}. Since g is assumed cartesian in X ∗, and {(1, k)} is
cartesian by what is already proved, it follows from Lemma 1.1 that {(w, 1)} is cartesian. Since it
is also vertical, it follows that it is an isomorphism in X ∗, hence w is an isomorphism in X . (And
this proves the second assertion of the Proposition.) Since k is cartesian in X , w−1.k is cartesian
as well, and

(w, k) ≡ (1, w−1.k),
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72 A. Kock

so g has a representative of the claimed form. q.e.d.

Proposition 4.3. The functor π∗ : X ∗ → B is a fibration over B

Proof. Let β : A→ B be an arrow in B, and let Y ∈ XB . Since X → B is a fibration, there exists
in X a cartesian arrow h over β with codomain Y , and then the vh span (1, h) represents, by the
above, a cartesian arrow in X ∗ over β. q.e.d.

The argument gives what may briefly be expressed: the Cartesian arrows of X are the same as
the Cartesian arrows of X ∗.

Since X ∗ → B is a fibration, we may ask for its fibrewise dual X ∗∗:

Proposition 4.4. There is a canonical isomorphism over B between X and X ∗∗.

Proof. We describe an explicit functor y : X → X ∗∗. Let us denote arrows in X ∗ by dotted arrows;
they may be presented by vh spans (v, h) in X . We first describe y on vertical and cartesian arrows
separately. For a vertical v in X , say v : X → X ′, we have the vh span (v, 1) in X , which represents
a vertical arrow v : X ′ 99K X in X ∗; thus we have a vh span (v, 1) in X ∗, which in turn represents a
vertical arrow X → X ′ in X ∗∗. This arrow, we take as y(v) ∈ X ∗∗. Briefly, y(v) = ((v, 1), 1). – For
a cartesian h : X ′ → Y (over β, say), we have a vh span (1, h) in X , which represents a horizontal
arrow h : X ′ 99K Y in X ∗ (cartesian over β); thus we have a vh span (1, h) in X ∗, hence an arrow
in X ∗∗, from X ′ to Y which we take as y(h) ∈ X ∗∗; briefly, y(h) = (1, (1, h)). The construction
Theorem 3.1 can now be applied; thus for a general f : X → Y in X , we factor it v.h with v vertical
and h cartesian, and put y(f) := y(v).y(h). We leave to the reader to verify the conditions 3) and
4) of the Theorem, i.e. that a different choice of v and h gives an equivalent vh span in X ∗, thus
the same arrow in X ∗∗.

Conversely, given an arrow g : X → Y in X ∗∗, represent it by a vh span in X ∗, (v, h),

X ′ ...................
h

- Y

X

v

?

.................

Since v is vertical, we may pick a representative of v in the form (v, 1) with v : X → X ′, and since
h is cartesian in X ∗, we may pick a representative of it if the form (1, h), with h : X ′ → Y in X .
Then the composite v.h : X → Y makes sense in X , and it goes by y to the given g. q.e.d.

For simplicity of notation and reading, one sometimes assumes that one has a cleavage for a
given fibration X → B, i.e. a choice of Cartesian arrows; for α an arrow in B and Y an object in
X over the codomain of α, the chosen Cartesian arrow over α is denoted α∗(Y ) → Y . With such
a cleavage, each equivalence class of vh composition pairs has a unique representative with one of
these chosen arrows as h-part; and similarly for vh spans.
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Bundle functors and fibrations 73

5 The codomain fibration, and bundle functors

Recall that if B is a category with pull-backs, then ∂1 : B2 → B is a fibration; the Cartesian arrows
are the pull-back squares. This fibration is called the codomain fibration. Note that for A ∈ B, the
category (B2)A is the slice category B/A.

For simplicity of notation, we assume in this Section a cleavage, which here amounts to a choice
of pull-back diagrams, for any α and y with common codomain; then the following uses of the
notation α∗ is standard:

· - ·

A

α∗(y)

?

α
- B

y

?

or with slight abuse:

α∗(Y ) - Y

A
?

α
- B.

y

?

Note that we do not assume that α∗(Y ) = y∗(A).
The identity functor idB : B → B is likewise a fibration over B (this does not depend on B

having pull-backs). When viewing B as being fibered over B in this way, it is sometimes useful to
denote it B1, in analogy with B2; all arrows in B1 are Cartesian.

If B is the category of smooth manifolds, B2 is not a fibration; B does not have enough pull-
backs. But one has a full subcategory B(2) of B2 consisting of the submersions. It is a fibration
over B, again with pull-backs as Cartesian arrows.

An important class of functors over B are functors : B1 → B2 (or, if B is the category of smooth
manifolds, functors B → B(2)). We call such a functor a bundle functor. Thus, the data of such
functor amounts to a functor T0 : B → B plus a natural transformation π : T0 → idB (whose
instances are required to be submersions, in the case B(2). Such data is called a bundle functor in
[12], from where we have imported the terminology). Often, one does not notationally distinguish
between T0 and T , or one writes T for T0 and π for the natural transformation. An example
is the tangent bundle formation: If A is a smooth manifold, T (A) is the tangent bundle of A,
πA : T0(A) → A (we are disregarding for the moment the fibrewise vector space structure of the
tangent bundle). Naturality of π says that for α : A→ B

T0(A)
T0(α)- T0(B)

A

πA

?

α
- B

πB

?

commutes. The bundle functor thus described is only Cartesian (i.e. preserves Cartesian arrows)
when all squares of this form are pull-backs. (This square is clearly not a pull-back when T is the
tangent bundle formation, unless α is a local diffeomorphism.)
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74 A. Kock

6 The fibrewise dual of the codomain fibration

We describe (B2)∗, specializing the description in the Section 4. Explicitly, for this special case, its
objects are likewise arrows in B, and the arrows over α : A → B, from x : X → A to y : Y → B,
may be presented in the form of commutative diagrams η (“comorphisms” from x to y)

α∗(Y ) - Y

X

v

?
η

A

x

?

α
- B

y

?

(1.8)

where the rectangle is a pull-back; since we have chosen pull-backs, the presentation is unique if we
insist that the top arrow is a chosen Cartesian, as suggested by the notation. Note that, given the
x and y, as well as α, the information of the comorphism η resides in the map denoted v.

This kind of pull-back diagram was also considered in [18], under the name of “pull-back around
α, x”. By the general theory of Section 4, the comorphism η : x 99K y exhibited in (1.8) is
Cartesian in (B2)∗ iff v is an isomorphism. This implies that it is a terminal object in the relative
commacategory (B2)∗A ↓α y. We may also ask the dual question: when is η pre-coCartesian, i.e.
initial in the relative commacategory x ↓α ((B2)∗)B ? This is precisely to say that the diagram is a
distributivity pull-back, in the sense of [18]; for, this means by definition that it is a terminal object
in the category of “pull-backs around α, x” . The reason why our “initial” then is substituted for
“terminal” in [18] is just that, in our set up, the A-fibre of (B2)∗ is dual to B/A. When the functor
α∗ : B/B → B/A has a right adjoint Πα, then the y occurring in (1.8) is Πα(x), and the v is the
back adjunction α∗Πα(x)→ x.

It is worthwhile to reformulate the description of the fibrations B2 → B and (B2)∗ → B for the
case where B is the category of sets, so that an object ξ : X → A in B2 or in (B2)∗ may be seen as
a family {Xa | a ∈ A} of sets: take Xa := ξ−1(a).

In this case, a morphism in B2 over α : A→ B, from X → A to Y → B, may be seen as a family
of maps {fa : Xa → Yα(a) | a ∈ A}, and a morphism in (B2)∗ (i.e. a comorphism) over α : A → B
from X → A to Y → B may be seen as a family of maps {fa : Yα(a) → Xa | a ∈ A}. Let us write
f : X 99K Y for such a comorphism, reserving the plain arrows for acual set maps. Composition
of comorphisms is essentially just composition of maps: if f : X 99K Y , as above, is a comorphism
over α : A → B and g : Y 99K Z similarly is a comorphism over β : B → C, the composite of
f followed by g is the comorphism h : X 99K Z over A → C, given by ha(z) := fa(gα(a)(z)) for
z ∈ Zβ(α(a)).

Note that for Y → B and α : A→ B, α∗(Y ) is given by the A-indexed family {Yα(a) | a ∈ A}.
These set-theoretic descriptions do not depend on cleavages; on the contrary, suitably inter-

preted, reading a ∈ A etc. as generalized elements (as in [8]), they describe the universal properties
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characterizing the objects or maps in question (even in more general categories). Similarly when
reading objects in fibered categories as “generalized families” (as in [5] Chapter I).

7 Star bundle functors

As in two the previous sections, we consider a category B with pull-backs, so that we have two
fibrations over B, B2 and its fibrewise dual (B2)∗. We also have the trivial fibration B1 over B. A
star bundle functor (terminology from Kolář, Michor and Slovák, [12]) is now defined to be a functor
S over B from B1 to (B2)∗. By the explicit description in the previous section, this amounts to the
following data: for each A ∈ B, an arrow πA : S0(A) → A, and for each α : A → B, a pull-back
diagram like (1.8),

α∗S0(B) - S0(B)

S0(A)

v

?

A

πA

?

α
- B.

πB

?

More generally, if X → B is any fibration, a star-bundle functor with values in X → B is a functor
over B from B1 to X ∗. The star bundle functors relevant for differential geometry considered in
[12] have as X the full subcategory B(2) ⊆ B2 whose objects are the submersions between smooth
manifolds.

The formation of cotangent bundles for manifolds is an example, to be described in the following
Section. It is defined as the “fibrewise linear dual” of the tangent bundle, viewed as a vector bundle,
i.e. as the composite of T with a “fiberwise duality” functor †, whose categorical status will be
described.

8 Vector bundles, and the cotangent bundle

The full generality of the present Section is probably that of fibrewise symmetric monoidal closed
category, in the sense of [3] or [16], but we formulate things more concretely in terms of the fibered
category V → B of vector bundles (over spaces in a suitable category B of, say, smooth manifolds).
Thus VA is the category of vector space objects in the category B/A. This V comes with a forgetful
functor over B from V to B2.

Again, we assume a cleavage, and the resulting notation like α∗(Y ) for the chosen pull-back
of a vector bundle Y along a smooth map α. We intend here to clarify the role of the notion of
fibrewise linear dual of a vector bundle X → A, which we denote X† (refraining from using X∗,
since the ∗ already has two meanings: α∗ for pull-backs along α, and Y∗ for the fibrewise dual
fibration of a fibration Y → B). Clearly, this dualization is a contravariant endofunctor on VA, for
each A ∈ B. (For vector spaces, the functor † is the standard contravariant dualization functor for
vector spaces.)
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Proposition 8.1. The fibrewise linear dualization functor (−)† : VA → (VA)op extends canonically
to a functor V → V∗ over B; it is a Cartesian functor.

Proof. Consider an arrow in V over α, meaning a commutative diagram

X
t - Y

A
?

α
- B.

?

with t fibrewise linear, so for each a ∈ A, the map t gives a linear map ta : Xa → Yα(a), hence a

linear t†a : (Yα(a))
† → X†a. But (Yα(a))

† = (Y †)α(a). Jointly, these t†a produce a map α∗(Y †)→ X†

in VA, which is the vertical part of the desired comorphism; the horizontal part is the arrow
α∗(Y †) → Y † in the diagram defining α∗(Y †). – If the given square is a pull-back, each ta is an
isomorphism, hence so is t†a, so in this case, the vertical part described is an isomorphism; therefore
the comorphism described is Cartesian; this proves the last assertion. q.e.d.

From this perspective, the cotangent bundle construction is a functor (over B), namely the
composite of the two functors

B
T - V

† - V∗;

both T and † are functors over B, hence so is the composite. Here, V and V∗ come with forgetful
functors to B2 and (B2)∗, respectively. Composing with the forgetful functor V∗ → (B2)∗ then
gives a functor over B, B1 → (B2)∗, i.e. a star-bundle functor with values in B2.

The same argument as for the Proposition gives that the fibrewise linear dualization functor
(−)† : VopA → VA extends canonically to a functor V∗ → V over B; it is likewise Cartesian. (This
does not depend on whether V → V †† is an isomorphism.)

Remark 8.2. A more general description of a cotangent (star-bundle) functor exists in algebraic
geometry, using Kähler differentials; the linear dual of it then may be used as a more generally
applicable notion of tangent bundle. We give an account of this description, in terms of jet-bundles,
in Section 12 below.

9 Strength

Let B be a category with finite limits and let X → B and Y → B be fibrations. We consider a
functor F : X → Y over B (F is not assumed Cartesian). Then we shall consider a certain kind of
structure on such a functor, which we call fibrational strength, or just strength.

For this, we introduce some notation. If Q ∈ B and X ∈ XM , we have an object p∗(X) ∈ XQ×M ,
where p : Q ×M → M denotes the projection. This object in XQ×M we denote Q ⊗X. It comes
equipped with a (Cartesian) morphism Q⊗X → X over p.

Example. Let B be a category with finite limits. Then the codomain fibration ∂1 : B2 → B is a
fibration, and pull-back squares in B are the Cartesian arrows in B2. If ξ ∈ B2, say ξ : X → M ,
and Q ∈ B, it is clear that Q⊗ ξ, as a map in B, is just Q× ξ : Q×X → Q×M .
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Let F : X → Y be a functor over B, a strength on F consists in the following data: for Q ∈ B
and X ∈ XM , one gives a morphism in YQ×M

tQ,M : Q⊗ F (X)→ F (Q⊗X),

natural in Q and X, and satisfying a unit- and associativity constraint w.r.to Q. (Example: for T
the tangent bundle functor B → B2, there is a canonical strength: tQ,X : Q⊗T (X)→ T (Q×X) is
the inclusion of the subbundle of vertical tangent vectors to Q ×X (vertical w.r.to the projection
Q×X → Q).)

Since F is a functor over B, there is a canonical morphism F (p∗(X)) → p∗(F (X)), i.e. F (Q ⊗
X)→ Q⊗ F (X) in YM . It is invertible if f is Cartesian; and for F Cartesian, this inverse will be
a strength structure tQ,X on F .

If F : X → Y and G : Y → Z are functors over B, equipped with strengths t and s, respectively,
one constructs out of t and s in an evident way a strength on the composite functor G◦F : X → Z.
We obtain a 2-category: objects are categories fibered over B, arrows are functors over B equipped
with strength, and 2-cells are the vertical natural transformations between parallel functors over
B, compatible with the given strengths.

If B is the category of smooth manifolds, a map h : Q×M → N in B may be seen as a smoothly
parametrized family of smooth maps h(q,−) : M → N (with Q as the space of parameters), and a
map H : Q⊗X → X ′ over h may be seen as a Q-parametrized family H of maps in X from X to
X ′, with the qth member of this family living over h(q,−) : M → N .

A strength t of F : X → Y gives rise to a process transforming a parametrized family of maps
in X to a similarly parametrized family of maps in Y, as follows. Given a map h : Q×M → N in
B, and given a map H in X over h, say H : Q⊗X → X ′, then the composite

Q⊗ F (X)
tQ,X- F (Q⊗X)

F (H)- F (X ′)

is a map in Y over h; so F has transformed the Q-parametrized family H of maps from X to X ′

into a Q-parametrized family of maps F (X) → F (X ′). This property of F is called regularity in
[12] 18.10.

The identity functor B → B is a fibration, denoted B1; for this fibration, Q⊗X = Q×X. Recall
that a bundle functor is a functor F : B1 → B2 over B, thus for X ∈ B, the object F (X) in B2 is
an arrow of the form F (X) : F0(X) → X in B, where F0 is the composite of F with the domain
formation ∂0 : B2 → B. A fibrational strength t of such functor gives, for Q and X in M , an arrow
tQ,X in B2 from Q×F (X) to F (Q×X), which amounts to a commutative square in B (really just
a triangle) of the form

Q× F0(X)
t′′Q,M- F0(Q×X)

tQ,X

Q×X

Q× F (X)

?

id
- Q×X

F (Q×X)

?

, (1.9)

and the top map in this square (as Q and X range over B) equips the endofunctor F0 : B → B with
a tensorial strength t′′ in the sense of [7]. Vice versa, if such t′′ make the squares like the above
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commute, these squares will constitute a fibrational strength t on F . (To say that the squares
commute is in turn equivalent to saying that F , viewed as a natural transformation from F0 to the
identity functor on B, is a strong natural transformation, in the sense of tensorial strength.)

Let F : B1 → B2 be a bundle functor preserving finite products. Thus F (Q × B) ∼= F (Q) ×
F (B) by the canonical map. In particular (since ∂0 : B2 → B preserves products), F0(Q × B) ∼=
F0(Q)×F0(B). An example is where F is the tangent bundle functor (ignoring the fibrewise linear
structure).

A particular bundle functor on B is the diagonal ∆ associating to B ∈ B the identity map
B → B. It terminal among bundle functors B1 → B2.

A section of a bundle functor F is a natural transformation z (over B) from ∆ : B1 → B2 to
F , thus to each B ∈ B, zB : B → F0(B) is a section of F (B) : F0(B) → B. The zero section of a
tangent bundle is an example.

Proposition 9.1. Let F be a finite-product preserving bundle functor equipped with a zero section.
Then F carries a canonical (fibrational) strength.

Proof/Construction. By the above (cf. (1.9), it suffices to construct in B a map t′′Q,B : Q×F0(B)→
F0(Q × B). This is taken to be the composite of zQ × F0(B) : Q × F0(B) → F0(Q) × F0(B) with
the isomorphism F0(Q)× F0(B) ∼= F0(Q×B). q.e.d.

The notion of (fibrational) strength of a functor F : X → Y over B, in the sense described here,
generalizes the notion of “regularity” of a bundle functor, [12] 14.21 (and 18.10). The reason we
change terminology from “regularity” to “strength” is to emphasize 1) that, in the abstract setting,
it is a structure on the functor in question, not just a property, and 2) to tie it up with the notion
of (monoidal, or tensorial) strength considered in the context of endofunctors F on a monoidal
category B, as in [7], (or [14], or [10] Section 2 for a recent account). Such a structure in turn is
equivalent to a B-enrichment of F , in case B is monoidal closed; cf. [7].

If X → B is the fibration, where XB is the category of vector space objects in B/B (or group
objects, or any other algebraic kind of structure), then there is a faithful forgetful functor X → B2
over B, which is Cartesian, in particular, it preserves the formation Q⊗X. So if the bundle functor
F considered above factors through X → B2 (a “vector bundle functor”), then the t′′Q,B constructed
above is the underlying arrow of an arrow in X , i.e. is fibrewise linear, and equippes the vector
bundle functor F with a fibrational strength.

This in particular applies to the tangent bundle formation. The cotangent bundle functor
likewise carries a canonical strength, by the following

Proposition 9.2. Let X → B be the category of vector bundles. Then if there is given a strength on
F : B → X , then there is canonically associated a strength on the star bundle functor F † : B → X ∗.

Proof. This follows since the dualization functor † : X → X ∗ is Cartesian, and hence carries a
canonical strength; and a composite of two functors with a strength has a strength. Note that the
instantiations tQ,B of the strength described here are (vertical) maps Q⊗ F †(B)→ F †(Q×B) in
X ∗, and hence as vector bundle maps (maps in X ) are maps F †(Q×B)→ Q⊗ F †B; for, the fibre
of X ∗Q×B is (XQ×B)op. q.e.d.
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10 Flow natural transformation

Consider a category B with Cartesian products, and consider an endofunctor F : B → B with a
tensorial strenght t′′Q,B : Q × F (B) → F (Q × B) (for all Q and B in B). If now D ∈ B is an
exponentiable object, so (D ×−) a (D t −), one derives, for all B ∈ B, a map

λD,B : F (D t B)→ D t F (B),

namely the exponential transpose of the composite

D × F (D t B)
t′′D,DtB- F (D × (D t B))

F (ev)- F (B).

If D1 → D2 is a map between exponentiable objects, one gets a map D2 t B → D1 t B (“ t is
contravariant in the first variable ”), and then λ will be natural in the Di’s, in an evident sense.
Also, λ1,B : F (1 t B) → 1 t F (B) may be identified with the identity map on F (B). So if the
exponentiable object D is equipped with a point 0 : 1→ D, one obtains a commutative triangle

π ◦ λD,B = F (π), (1.10)

where π denotes 0 t B or 0 t F (B). So λD,B is a map of bundles over F (B).
(If B is Cartesian closed (or even just symmetric monoidal closed), all objects D are exponen-

tiable, and therefore one has such a λD,X for all D,X, and this data encodes strength of F in what
may be called the “cotensorial” form of strength, cf. [6] or [10].)

For the following, we shall assume that B is a model for synthetic differential geometry, in
particular, it may contain the category of smooth manifolds as a full subcategory, but it also
contains some “infinitesimal objects”, in particular, it contains an object D with the property that
for any manifold M , T (M) = D t M , and the base map T (M) → M is “evaluation at 0 ∈ D”,
where 0 : 1 → D is a given point of D. Then for any endofunctor F : B → B with a (tensorial)
strength, we have, by the above construction, λD,M : F (D t M) → D t F (M). If F (M) is
a manifold whenever M is, then this map is a map between manifolds, since manifolds form a
full subcategory of B; and λD,M is natural in M (since λ is); it is the flow natural transformation
F (T (M))→ T (F (M)) for F considered in [12] 39.1 (denoted there ιM ). It originated in a discussion
between Kolář and the present author in the early 1980s, see the “Remarks” at p. 349 in loc.cit.

An application of the flow natural transformation is that it gives a “prolongation procedure”
for vector fields on M : to a vector field ξ : M → T (M) on M , one constructs a vector field
ξ̃ : F (M)→ T (F (M)) on F (M), namely the composite

F (M)
F (ξ)- F (T (M))

λD,M- T (F (M)).

11 Jet bundles

The kth order jet bundle of a smooth fibre bundle p : E → B in differential geometry is another
smooth fibre bundle Jk(p)→ B (usually just denoted Jk(E)). The fibre over b ∈ B consist of k-jets
at b of sections of E → B, see [15], or [9] 2.7 (and Remark 7.3.1); in the latter synthetic context, the
notion of k-jet becomes representable, in the sense that there is for every b ∈ B a subset Mk(b) ⊆ B
(with b ∈ Mk(b)), such that a k-jet at b is a map with domain Mk(b), in particular, a k-jet of a
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section of p : E → B is a map s : Mk(b) → E with p ◦ s equal to the inclusion map Mk(b) → B.
For fixed B, Jk(E) depends in a functorial way on E in the category of smooth fibre bundles over
B; synthetically, if f : E → E′ is a map of bundles over B and s is a k-jet of a section of E,
Jk(f) takes a section s : Mk(b) → E of E to the map f ◦ s : Mk(b) → E′. Or, in classical set-up,
post-composition by f of a partial section s, representing the given jet, has as k jet at b the desired
jet section of E′.

So for each B ∈ B, we have an endofunctor Jk on the category BB (= the category of smooth
fibre bundles over B). We shall investigate the functorality properties of Jk as B varies over the
category of smooth manifolds.

To simplify the exposition, we shall embed the category of smooth manifolds into a topos model
B of synthetic differential geometry (cf. e.g. [8] or [9]), where the jet construction works not just
for smooth fibre bundles E → B but for any smooth map E → B, (where B is a manifold), so that
for each B, Jk is an endofunctor JkB on B/B.

The description (from [9] Remark 7.3.1) of Jk is given in terms of the locally Cartesian closed
structure of B, as follows: The data of the Mk(b), as b ranges over B, resides in “the kth neigh-
bourhood of the diagonal3 of B”,

B(k)

c -

d
- B;

and similarly for A. Here, B(k) ⊆ B×B consists of pairs (b, b′) with b′ ∈Mk(b), and c and d are the
restrictions of the two projections B×B → B. Similarly for A(k) ⊆ A×A (where we again denote
the two projections by c and d). The map α×α : A×A→ B×B restricts to a map α : A(k) → B(k)

(equivalently, any map A→ B restricts, for all a ∈ A, to a map Mk(a)→Mk(α(a))). Pulling back
along d : B(k) → B defines a functor d∗ : B/B → B/B(k), and since B is locally Cartesian closed,

this functor has a right adjoint Πd : B/B(k) → B/B. In these terms, the endofunctor Jk on B/B is
just the composite Πd ◦ c∗.

Theorem 11.1. The functors (JkB)op are the fibres of an endofunctor Jk : (B2)∗ → (B2)∗ over B.

Proof. Since we already have the functor Jk on the individual B/A, (for A ∈ B) it is possible to prove
this using the construction Theorem 3.1; however, since the categories and functors have so concrete
descriptions, it is also informative to give the construction and proofs ad hoc, using set/family -
theoretic descriptions, as in the Remark at the end of Section 6. The construction amounts to a
process which to a comorphism f over α : A→ B from X → A to Y → B associates a comorphism
Jkf over α from JkX to JkY . Recall that in the set theoretic description (translating (1.8) into
elementwise terms), a comorphism f over α amounts to a family of maps fa : Yα(a) → Xa, for a

ranging over A. Similarly, the required Jkf is to consist of a family (Jkf)a : (JkY )α(a) → (JkX)a.

An element s in (JkY )α(a) is a partial section s : Mk(α(a))→ Y of Y → B. The composite

Mk(a)
α- Mk(α(a))

s- Y

3The use of a “kth neighbourhood of the diagonal”, also called “prolongation spaces”, for the consideration of jet
bundles is crucial in [13]; the setting there is that of manifolds equipped with a structure sheaf of rings (that may
contain nilpotent elements), as considered by Grothendieck and Malgrange.
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is a map Mk(a) → Y over α, or, equivalently, a map Mk(a) → α∗(Y ) over A, thus an element
of (Jk(α∗Y ))a, to which we may apply the map Jkf : Jkα∗(Y ) → JkX; this means just: post-
composing with f : α∗Y → X. Thus, the element in (JkX)a that we get is the map Mk(a) → X
given elementwise as follows: to input a′ ∈Mk(a), we get as output fa′(s(α(a′))) ∈ Xa′ . From this
later description, the compatibility of the construction of Jk with composition of comorphisms is
almost immediate. q.e.d.

The functors Jr : (B2)∗ → (B2)∗ are not in general Cartesian.

Remark 11.2. Let us note that if the fibres of Y → B carry some algebraic structure, say that of
vector spaces, then so do the fibres of JkY . This follows, since Jk = Πd ◦ c∗ is a composite of two
right adjoints, so preserves algebraic structure. So Jk : (B2)∗ → (B2)∗ lifts to a functor V∗ → V∗
over B, where V → B is the category of vector bundles. Similarly for other kinds of algebraic
structure, e.g. pointed spaces.

Remark 11.3. Let us also remark that the existence of the maps α∗(JkY )→ Jk(α∗Y ) considered
above implies the existence of a fibrational strength of the functor Jk: just take α to be the
projection Q×B → B.

12 Bundle valued 1-forms

The natural setting for the present subsection is the fibration of pointed bundles (with morphisms
preserving the given points); there is a forgetful functor from the fibration V → B of vector bundles
to the codomain fibration B2 → B, and this functor factors through the fibration of pointed bundles,
but in order not to overload the exposition with too much terminology and notions, the presentation
that we shall give is in terms of the fibration V → B of vector bundles. If E → B is such a bundle, a
1-jet at b ∈ B of a section, i.e. a partial section s : M1(b)→ E is called an E-valued (cominatorial)
cotangent at b if s(b) = 0b. So s and the zero section agree on b ∈M1(b), but do not necessarily agree
on the whole of M1(b). Clearly, the set of E-valued cotangents form a sub-bundle of J1(E) → B,
called the bundle of E-valued 1-forms; let us denote it Ω1(E) → B. The functor E 7→ Ω1(E) is a
subfunctor of the functor J1 : V∗ → V∗ over B.

Let R be a fixed vector space (typically, the ground field). There is a functor B → V over B,
assigning to B ∈ B the constant vector bundle B × R → B. This functor is Cartesian, and hence
may equally well be viewed as a functor B → V∗, since the category of Cartesian arrows in V and
V∗ are the same. Composing with Ω1,

B
−×R- V∗

Ω1
- V∗,

we get a vector star bundle functor, i.e. a functor B → V∗; for B the category of finite dimensional
manifolds, it is (isomorphic to) the cotangent bundle functor T † : B → V∗ described Section 8. In
algebraic geometry, one sometimes has to define the bundle functor T : B → V (tangent bundle) as
the composite

B
Ω1

- V∗
† - V.
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